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Introduction

Dislocation or fear of dislocation are common and 
unwelcome thoughts for both patients and surgeons involved 
with total hip replacements (THR) (1-5). Tripolar total hip 
replacement was created to obtain a stable and natural range 

of motion (ROM). Tripolar prostheses combine the validated 

concepts of a two-piece cementless metal/polyethylene 

acetabular component and a conventional bipolar prosthesis. 

In tripolar hip replacement, a conventional a two-piece 

acetabular component is used but the polyethylene liner inner 
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dimension is 41–54 mm rather than 22–36 mm. A standard 
bipolar prosthesis is then matched to this resurfacing-type 
acetabular component (6,7) (Figures 1,2). With the 10-
fold improvement in wear resistance of highly cross-linked 
polyethylene, it is appropriate to reconsider the choice of a 
tripolar prosthesis when additional stability is needed (2,8). 
Dual mobility and tripolar hip designs have been described 
as providing less chance of dislocation, greater ROM, and 
more normal function compared to conventional THR. In 
contrast, they have also been described as unnecessarily more 
complicated, not any better, more productive of wear debris, 
and for the dual mobility prostheses, prone to intraprosthetic 
dislocation (9-12). Tripolar hips have not been used 
commonly. Tripolar hip constructs convert a conventional  
28 mm THR into an average 47 mm diameter THR. 

Three hypotheses form the basis for the mobile-bearing 
hip concept: (I) the introduction of an additional bearing 
surface reduces trunnion stress and, therefore, corrosion, 
(II) the larger diameter articulation allows for greater ROM 
before dislocation occurs (increased jump distance), (III) 
volumetric wear is reduced by sharing the motion between 
two articulations rather than one. 

The first successful use of a tripolar prosthesis was 
in 1972, when a hip resurfacing patient experienced a 
femoral failure, but the polyethylene acetabular component 
remained unworn and well-fixed (13,14). A revision 
procedure matching a bipolar prosthesis to the acetabular 
component was performed (7). It was quickly found that 
using a bipolar prosthesis with a resurfacing acetabular 
prosthesis created a hip replacement with a ROM that nearly 
matched that of the contralateral normal hip. Primary THR 
using this implant combination was reported in 1979. Its 
initial use was in high-demand physically active patients (15). 
In a tripolar prosthesis, the articulation between the bipolar 
and the acetabular liner provides an additional area of 
low-friction motion. This assembly provides freedom of 
movement and stability. Also, the femoral head on the 
stem can be limited to 28 mm, thereby reducing trunnion 
corrosion (8). For a bipolar prosthesis, it is difficult to 
measure the amount of wear of the interior polyethylene 
articulation, as it is hidden by the metal exterior (16-18). 
There is no literature reporting the wear and performance 
of tripolar prostheses except for constrained implants, which 
are completely different and subject to extremely high wear. 

In the 1980s, it was concluded that the minimal 
safe thickness of polyethylene was 8 mm (19). Because 
polyethylene thickness of 3–4 mm is needed for successful 
polyethylene hip resurfacing and tripolar component use, 
polyethylene hip resurfacing and tripolar hip replacement all 
but disappeared. There is now favorable clinical experience 
and increasing favorable wear simulator experience with 
highly cross-linked polyethylene of 3–4 mm thickness  
(20-23) (Table 1).

The purpose of this study was to evaluate wear, 
oxidation, particle generation, mechanical performance, 
and function of a tripolar hip. The present study addressed 
the following questions: (I) what is the wear of the tripolar 
prosthesis? (II) what parts of the prosthesis contribute to 
wear and in what proportions? (III) do component parts 
stay together and function as designed? (IV) how does the 
wear of a tripolar prosthesis compare to the wear of both 
conventional and dual mobility hip prostheses? I present the 
following article in accordance with the TREND reporting 

Figure 1 This photograph shows the tripolar hip prosthesis. The 
implant is Titanium Nitride coated. The implants are placed 
without cement.

Figure 2 This photograph shows the 4 mm thick acetabular liner 
and the bipolar polyethylene.
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checklist (available at https://dx.doi.org/10.21037/aoj-21-7).

Methods 

This study evaluated 24 retrieved tripolar prostheses  
(23 patients) implanted between February 1999 and 
February 2016. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 
The study was approved by Institutional Review Board of 
Swedish Medical Center (study number S1905-11) and 
informed consent was obtained from all the participants.

Explanted components were retrieved and cleaned using 
institutional procedures and stored in a subzero freezer to 
minimize ex vivo oxidative changes. The implants were 
retrieved from 12 women and 11 men with an average age 
at surgery of 49 years (range, 36–70 years) and mean weight 
of 78 kg (range, 54–110 kg). The diagnosis requiring THR 
was osteoarthritis (15), revision for recurrent dislocation (6), 
femoral neck fracture (2), and avascular necrosis (1). 
Implants were retrieved postmortem from 15 patients and 
during revision procedures in eight patients performed 
for infection (5), periprosthetic fracture (3). The time 
from the initial surgery to implant retrieval ranged from  
5–22 years (mean, 14 years). The retrieval laboratory did 
not receive any failed tripolar implants and there no reports 
of mechanical failure of this bipolar or tripolar prosthesis. 
Clinical and radiographic data were available for all patients 
prior to implant retrieval. All patients were evaluated for 
osteolysis and implant loosening. The UCLA activity score 
and hip flexion were recorded for each patient premortem. 
Radiographs were taken in the neutral position as well as at 
the limits of abduction to determine the movement of the 

component parts (Figure 3A,B). 
The self-aligning bipolar prosthesis 510K 848889 

and the New Jersey acetabular component 510K 848888 
were used (SynovoPro, Fullerton, CA, USA). When used 
together they have been called the Trifecta Tripolar Total 
Hip Replacement. The components were: (I) femoral head 
(II) polyethylene bearing insert that snap fits on the femoral 
head, (III) ceramic-coated metal head that press fits on the 
bipolar polyethylene bearing insert, and (IV) fixed 2-piece 
acetabular component consisting of a titanium metal 
backing and a highly cross-linked polyethylene insert. A 
28 mm modular ceramic-coated femoral head was used in 
each case. The acetabular liners were from 41–54 mm inner 
diameter. The components were placed without cement 
(Figure 1). The bipolar prosthesis self-aligns with the load 
vector and positive eccentricity is built into the bearing 
insert. The outside spherical surface of the bearing is made 
eccentric by adding polyethylene at the periphery using an 
engineering calculation (24,25). Such eccentricity produces 
a small force couple when the cup is not aligned with a joint 
vector, which provides a self-correction to alignment (12). 
Most bipolar implants place additional polyethylene at the 
dome, and this creates negative eccentricity (Figure 4A,B). 
The bipolar polyethylene has two slits and is snap fit on the 
femoral head and secured with a retaining ring. Six keyways 
allow release of the bipolar polyethylene using an extraction 
ring from the covering TiN-coated shell.

The acetabular bearings are seated into a TiAl6V4 

shell. The shells are hemispherical with inferiorly placed 
anterior and posterior extensions and an anatomic inferior 
cut out (Figure 1). The acetabular shell has three keyways 
that resist spin out and flexible locking tabs that engage 

Table 1 Summary of literature reporting wear rates of polyethylene acetabular liners 

Study Diameter/thickness, mm Linear, mm/year Volumetric, mm3/year Gravimetric, mg/mc

Retrievals (this study) 48/4 0.009 5.6 5.4

Simulator (this study) 52.5/3.1 0.0038 7.1 6.64

Warburton (2018)† 24/1.5 0.028 0.28 0.99

Pritchett (2016) 51/4 0.005 9.4 8.8

Johnson (2014) 36/1.9 0.015 5.0 2.4

Bragdon (2001) 46/3 0.014 †† ††

Kelly (2010) 44/3.8 †† †† 2.3

Shen (2017) 36/3 †† 6.3 5.0
†, Warburton Ref. (46); ††, not reported.

http://dx.doi.org/10.21037/aoj-21-7
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A B

Figure 3 These anteroposterior pelvis radiographs of a 68-year-old man show (A) a right tripolar prosthesis in neutral abduction; (B) with 
abduction of his right hip, movement occurs at both the internal and external articulations of the tripolar.

Figure 4 These illustrations show that positive eccentricity (A) aligns the bipolar with the joint load vector, but negative eccentricity (B) 
allows a destabilizing varus position in response to load.
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a groove in the acetabular shell. The acetabular and 
bipolar polyethylene are from 3.23–3.68 mm in minimum 
thickness. The acetabular shells are 2 mm thick and 
the coating for cementless fixation adds another 1 mm 

(13,21,22). The polyethylene bearings are GUR 1020 cross-
linked at 7.5 Mrad. They are treated with remelting at  
155 ℉ to limit free radicals and sterilized with ethylene 
oxide. The TiN ceramic surface layer coating on the bipolar 
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femoral head was 8 µm and it was deposited using a physical 
vapor deposition process (Ion Bond, LLC, Rockaway, NJ, 
USA). The radial clearance was a minimum of 300 µm and 
the surface roughness of the femoral component was <3 µm.  
The median diameter of the outer head was 47 mm 
(range, 41–54 mm). The retrieved polyethylene liners and 
bipolar polyethylene inserts were analyzed for wear using 
gravimetric, geometric, 3D light evaluation, morphologic 
appearance, and machining marks. The morphologic (visual) 
analysis was performed with the unaided eye and with 
stereomicroscopic magnification of 20×. The dimensions 
of both the bipolar polyethylene insert and acetabular liner 
insert were compared to the manufacturing blueprints and 
measurements of unused implants. The measured change 
in the dimensions divided by the number of years of use 
was used to calculate the wear rate. This retrieval study was 
conducted using ASTM F561-97 (26) and ISO 12891 (27). 

Oxidation index testing

The polyethylene components were visually inspected 
looking for white banding, delamination, and cracks. 
Fourier transform infrared (FTIR) spectroscopy was 
performed and the oxidation index was assigned using 
ASTM F2102 (27). 

Damage assessment

During the morphologic examination, the rim was 
given particular attention for seven patterns of damage: 
(I) abrasion, (II) burnishing, (III) scratching, (IV) 
deformation, (V) embedded particles, (VI) pitting, and 
(VII) delamination. A damage score following the modified 
Hood method was assigned (28). The scores for each type 
of polyethylene damage ranged from 0–3 and the acetabular 
and bipolar polyethylene were divided into seven sections. 

Volumetric wear

Volumetric wear was measured with a digital Coordinate 
Measur ing  Machine  (CMM) (Mitutoyo  Amer ica 
Corporation, Aurora, IL, USA). The CMM measurements 
were compared to scans of size-matched never used implants 
provided by the manufacturer, who also provided blueprints. 
A best-fit comparison analysis was performed. The details of 

the CMM data collection have described elsewhere (30).  

3D optical scan

Recently, 3D optical scanners have been used to measure 
wear in total knee replacements, dual mobility prostheses, 
and hip resurfacing polyethylene liners. This technology 
is much faster and less costly than CMM measurements. 
It also is nondestructive and has been validated as accurate 
to within 0.18–0.46% compared to CMM. This technique 
has been described elsewhere (23,30,31). The ZfxTM system 
(Zimmer/Biomet, Palm Beach Gardens, FL, USA) was 
used. This system is used commonly in dental applications. 

Gravimetric wear analysis

The retrieval analysis also included determining the weight 
of the bipolar and acetabular polyethylene implants. 
This weight was compared to the known weight for the 
dimension as available from the manufacturer. Gravimetric 
analyses are used most often in wear simulator studies but 
can also provide useful information in retrieval studies. 
The known weight from the manufacturer, including 
soak controls using calf serum, were used to simulate the 
lubrication of implants in the body. The typical weight 
of an acetabular polyethylene liner was approximately  
6.65 grams. The bipolar polyethylene liners weighed from 
10–24 grams depending on dimension. Six unused 52.5 
/3.1 mm polyethylene liners were also wear-simulator tested 
for 5 million cycles per ISO 14242-1 (33).

Mechanical testing

The forces necessary to separate the bipolar and acetabular 
prostheses were measured using ASTM F1820. Tests for 
push-out, torque-out and lever-out were performed. The 
acceptance criteria for these are 200 N, 400 N* cm, and 
3,000 N* cm, respectively. Fatigue strength of both the 
acetabular shell and bipolar was tested according to ASTM 
F2068 with the acceptance criteria of 5,240 N. Separation 
tests for both the acetabular liner from the shell and the 
bipolar head from the femoral head were performed and 
the acceptance level for this is 490 N. The jump distance 
was determined. The Semlitsch endurance test for the 
assembled tripolar was run to 10 M cycles.
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ROM testing

ROM testing was performed premortem. 

Statistical analysis

All statistical analyses were performed using the statistical 
software SPSS v. 19 (SPSS, Chicago IL, USA). Descriptive 
statistics were displayed as mean, range, and standard 
deviations. Results are reported using a best fit analysis 
when appropriate. Wear rates and measurements were 
performed by two reviewers and intra-class correlation was 
used to assess inter-observer reliability. Standard statistical 
tests including Student’s t-test were used. A P value of <0.05 
was considered significant. 

Results

The results of wear testing are shown in Table 2. None of the 
retrieved implants had a mechanical failure. The median pre-
mortem hip flexion was 145°±20°. The mean UCLA activity 
score was 7.9. No implants had radiographic or clinical 
signs of osteolysis or loosening. Twenty-two of 24 implants 
(92%) showed wear on the rim of the bipolar polyethylene 
visible with the unaided eye, 11 of 24 (46%) showed limited 
delamination of the rim, and 11 of 24 showed rim abrasions. 

The average abrasion depth was 0.14 mm/yr. (range, 0.02–
0.34 mm/yr). The mean wear rate for the 6 wear-simulator 
tested 52.5/3.1 mm samples was 6.64±1.03 mg/mc. Wear 
was not related to patient activity score, age, or diagnosis. 
Most wear particles were of submicron size with an area 
smaller than 0.5 µm2. The number of particles in the capsular 
tissues was 0.75 million/gram (range, 0.1–1.9 million/gram). 
Electron microscopic examination of the periarticular tissues 
showed rare macrophages and limited inflammation. There 
were no signs of an adverse wear reaction. 

The results of mechanical testing are shown in Table 3. 
Both the bipolar inner articulation and outer articulation 
with the acetabular bearing continued to show the expected 
movement on both visual and radiographic examination in 
all cases (Figure 3A,B). The endurance test to 10 M cycles 
showed no failures which exceeds 2803 N of load. The 
bipolar shell remained in neutral or slight valgus orientation 
on all radiographs. There were no signs of white banding 
or impending failure of any polyethylene. The original 
machine marks were present on all retrievals. 

Discussion

Both the acetabular and bipolar systems in this study have 
been used effectively since 1988 (24). The retrieved tripolar 

Table 2 Results of wear testing

Wear tested Component part Results

Median volumetric wear,  mm3/year Bipolar bearing inner dome 7.1±4.2

Bipolar bearing convex side 11.3±7.3

Acetabular polyethylene liner 5.6±1.7

Acetabular liner + bipolar polyethylene 24.0±7.6

Median gravimetric wear, mg/mc Acetabular polyethylene liner 5.5±1.03

Total gravimetric wear, mm3/year Bipolar bearing 13.7±10

Median linear wear, mm/year Bipolar bearing 0.19±0.11

Acetabular polyethylene liner 0.009±0.008

Mean TiN wear, µm Pole of the bipolar head 1.85

Mean total wear, µm Pole of the femoral head 1.5 

Mean oxidation index Acetabular polyethylene 0.2 (max, 1.0)

Bipolar polyethylene 0.4 (max, 1.5)

Mean damage score Acetabular polyethylene 4.7 (max, 16)

Bipolar polyethylene 7.6 (max, 17)
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prostheses showed low wear and oxidation as determined 
by gravimetric, geometric (CMM), 3D optical analysis, 
and visual examination. Also, the mechanical function of 
the implants remained intact and faithful to the design. 
These retrieval results are consistent with published 
positive clinical outcomes of this tripolar prosthesis (13). 
The median combined volumetric wear was 24 mm3/yr., 
which is below the osteolytic volumetric wear threshold of 
40 mm3/yr. It is also less than the 38 mm3/yr. of a Charnley 
prosthesis and 38–54 mm3/yr. of a dual mobility prosthesis 
(34,35). In this tripolar prosthesis, ⅔ of the wear was from 
the bipolar polyethylene and ⅓ was from the acetabular 
liner. In a dual mobility, 54% of the wear comes from 
the convex surface of the polyethylene and 46% from the 
concave inner surface. The damage scores on the retrieved 
acetabular liners and bipolar polyethylene showed limited 
damage (16-18,36,37). Linear wear can be measured directly 
from CMM or 3D optical analysis or mathematically 
derived from volumetric wear and vice versa. Therefore, it 
is possible to compare retrieval and wear simulator studies 
to radiographic linear wear studies.

The low wear in this study is consistent with the results 
of other studies of highly cross-linked polyethylene. Highly 
cross-linked polyethylene has 10× less wear than conventional 
polyethylene (2,8,38,39). This allows for a reduction in 
thickness and an increase in diameter of liners without a wear 
penalty. Large diameter liners create a benefit in ROM and 

stability (13,34,40). Comparison to other studies is possible 
(Table 1). All of these wear studies suggest more than a 
lifetime of use can be expected. The wear of TiN was very 
low and consistent with prior studies (12).

The wear of the tripolar implant in the present study 
was much less than a bipolar prosthesis. It is not surprising 
that adding a low-friction acetabular surface reduces overall 
wear compared to the higher friction of the bipolar head 
articulating with a native acetabulum (16-18,36,37). The 
oxidation index of this highly cross-linked polyethylene was 
extremely low and consistent with the lack of mechanical 
failures seen with this implant. Factors contributing to the 
low wear seen in this study include: (I) the use of highly 
cross-linked rather than conventional polyethylene, (II) 
the positive eccentricity of the bipolar design, (III) reduced 
wear from the TiN ceramic coating, (IV) ethylene oxide 
sterilization rather than gamma irradiation, and (V) the 
unconstrained design (2,8,41). Over time, many bipolar 
prostheses have most, if not all, motion occurring between 
the bipolar polyethylene bearing and femoral head rather 
than shared between the femoral head and acetabular 
surface. This low friction tripolar system-maintained 
motion at both articulations (Figure 3A,B) (16-18,37). 
The radiographs showed that the bipolar design remained 
faithful to the positive eccentricity. A consistent neutral 
alignment was seen on each radiograph and at the retrieval. 
This creates favorable wear and stability.

Table 3 Results of mechanical testing

Mechanical testing Results

Mean jump distance 16±2 mm

Bipolar lever-out force 3,667±291 N* cm

Bipolar push-out forces 1,004±41 N pre-fatigue 6,160±552 N post-fatigue

Acetabular torque force 1,341 N* cm

Bipolar torque force 1,497 N* cm

Fatigue strength of the acetabular and bipolar shells 5,340 N at 10 mc cycles

Acetabular liner separation force Bipolar separation force 890±93.6 N 2,180±189 N

Mean abduction-adduction arc of motion before engagement  
(impingement) of the femoral neck on the bipolar

119°±9°

Combined internal and external rotation motion 240°±40°

Combined flexion and extension 145°±30°

Combined abduction and adduction 145°±30°

Flexion in 45° of internal rotation before impingement 92°±16°
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Mechanical testing showed that very high forces were 
necessary to cause disassembly of the acetabular liner 
from its shell and the bipolar head from the femoral head. 
The forces necessary were several times greater than the 
acceptance criteria and suitable even for high demand 
use. This includes fatigue testing, push-out, lever-out and 
torque-out for both the bipolar and acetabular components. 
This explains the lack of component separation with both 
the bipolar and acetabular components during the up to  
22 years of high-demand clinical use in this and other 
studies (5). It also explains the stability of this tripolar 
design. Mechanical testing showed stronger resistance 
to lever-out, torque-out, push-out, and liner separation 
compared to other implants (25,42-44). This acetabular 
component also has functioned well in clinical, wear, and 
deformation studies (20,23,45). The extended ROM and 
increased jump distance were also consistent with the 
excellent clinical function seen.

There are limitations to this work. Only one tripolar 
prosthetic design was studied and there were a limited 
number of cases. However, this is the largest retrieval study 
for a single type of bipolar prosthesis and the only retrieval 
study for an unconstrained tripolar prosthesis. The follow-
up interval is the longest reported. Using several methods 
to assess wear is also a strength of this work. 3D optical 
scanning is an emerging and efficient way to perform wear 
assessment (24,31,33). 

There are concerns about the use of tripolar hip 
prostheses. Implant disassembly can occur with bipolar 
designs, but it has not been reported with this implant 
despite four decades of use (45). The femoral neck is 
designed to impinge at the limit of the arc of motion to 
drive the inner bipolar articulation. Severe cases of bipolar 
impingement and osteolysis have been found when the 
movement of the outer bearing is impeded by development 
of high friction or a vacuum between the bipolar head and 
the native acetabulum. Certain patient lifestyles, however, 
might still lead to unfavorable neck impingement and 
adverse wear or component separation; however, this was 
not seen in this study. Debris from bipolar impingement can 
cause an inflammatory reaction or osteolysis. An acetabular 
bearing surface encourages motion at both articulations. 

The main use of tripolar prostheses is to treat hip 
instability following conventional THR. It has been a 
highly successful procedure for this indication (5). Tripolar 
prostheses have been used occasionally in high demand 
patients in need of a very stable hip replacement for certain 
adventure sports or physically demanding occupations (13). 

A tripolar prosthesis can also be used to treat acetabular 
wear after bipolar hemiarthroplasty and femoral failure 
after polyethylene hip resurfacing (14). A conventional 
THR can be adapted easily to a tripolar design simply by 
adding the bipolar component to the existing femoral head 
and changing the polyethylene acetabular liner to a larger 
diameter; the shell and stem remain. Tripolar implants have 
a median diameter of 47 mm compared with 28–36 mm 
for conventional THR. Tripolar prostheses are different 
from dual mobility prostheses. There are four concerns for 
dual mobility prostheses that are not concerns for tripolar 
prostheses: (I) intraprosthetic dislocation can occur when 
the femoral head disengages from the mobile polyethylene 
bearing; (II) the one-piece acetabular component can 
present fixation challenges or if a two-piece acetabular 
component is used, corrosion between the metal shell and 
liner can occur; (III) the metal acetabular component can 
be a source of metal sensitivity; (IV) stress shielding of the 
periacetabular bone supporting the thicker and stiffer press-
fit metal acetabular shell can occur (46). 

Tripolar prostheses are very stable and can achieve 
a near-normal ROM. With wear-resistant surfaces and 
favorable design features, a tripolar prosthesis can provide a 
lifetime of high-demand use. The results of this study create 
a compelling argument in favor of a tripolar prosthesis as 
a safer technology compared to dual mobility and other 
options for circumstances in which stability and ROM drive 
the need beyond a conventional hip prosthesis.
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